

Zero: yet another a modern circuit simulation tool

Sean Leavey
AEI Hannover / Ifosim working group
GWADW, Elba, 2019-05-23
LIGO-G1901053

LISO

- "Linear Simulation and Optimization of analog electronic circuits"
- Developed by Gerhard Heinzel in the mid 90s
- Motivated by:
 - Unrealistic op-amp behaviour found in SPICE
 - Need to determine stability criteria in circuits r r1 100 nin nsum
 - Need for a fitting/optimisation tool
- C based, closed source
- Performs *linear* analysis, a la Finesse, Optickle, etc.
- Circuit and analysis defined via input # fitting instructions file


```
# circuit definition
r r3 1.075k no nsum
r r4 42.2 nsum nm
r r6 65 nin gnd
c c2 4.7n nsum gnd
c c5 122p no nm
op op1 ad797 gnd nm no pole0=8e6
uinput nin 50
```

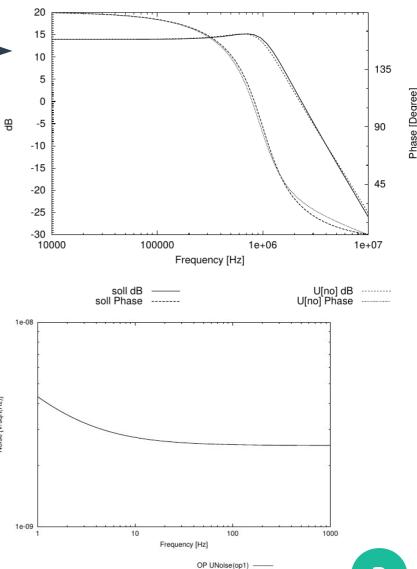
computing instructions freq log 10k 10M 400 uoutput no:db:deg

param r1 10 10k param r4 10 10k fit soll reim rel

What people use LISO for

Response calculations

 Send signal in, read signal out at various nodes or components


Noise calculations

 Calculate noise at a node or component from other nodes/components

Optimisation and fitting

 Find appropriate component values that yield predetermined response functions

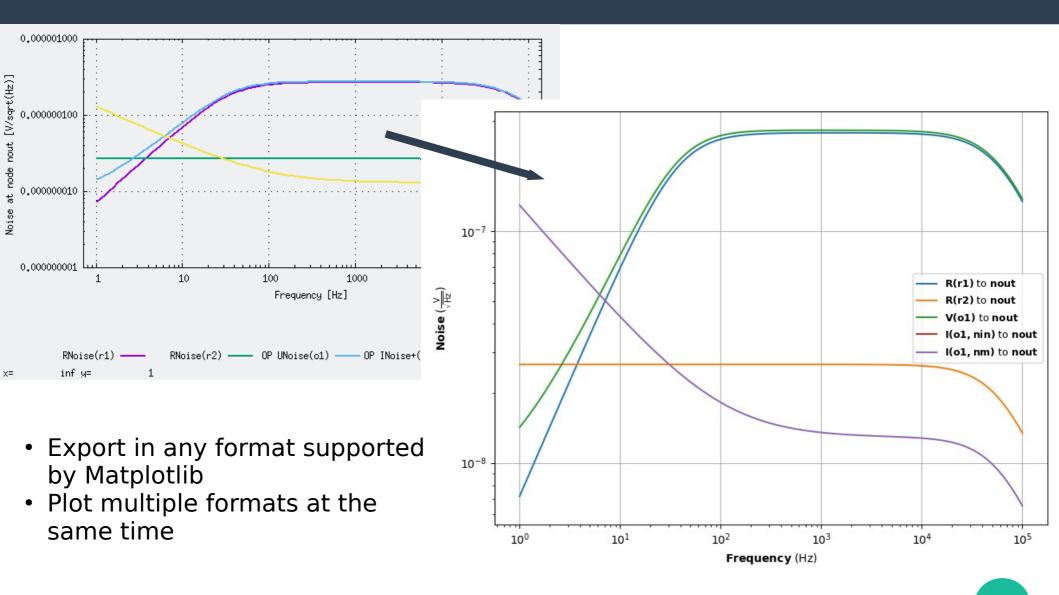
Stability analyses

LISO limitations

- LISO has worked pretty well for 20 years!
- But there are some limitations:
 - Closed source; available only via email; officially Linux only
 - Everything goes through input and output files;
 harder to run parameter studies / batch jobs
 (same problems as Finesse ≤2)
 - Cannot fit noise, only responses
 - Everyone has their own version of the op-amp library

Zero

- A clone of parts of LISO into a more accessible form to faciliate new features
- Python-based, open source
 - Cross-platform
 - Can use in Jupyter notebooks
 - Access to large scientific Python ecosystem (NumPy, SciPy, control systems toolbox, Finesse 3, etc.)
 - Modular; can bolt-on new analyses or use different solvers in future
- Supports most LISO input syntax (circuit mode) but also native Python
- Includes expanded LISO op-amp library (YAML formatted)


```
In [1]: from zero.liso import LisoInputParser
        import matplotlib.pyplot as plt
In [10]: # Init parser.
         parser = LisoInputParser()
         # Parse LISO script.
         parser.parse("""
         # Sallen-Key filter
         r r1 400k nin n1
         r r2 400k n1 n2
         r r3 50 n5 n3
         r rs 230 n5 n6
         r led 48.6 n6 gnd
         c c1 20u n1 n3
         c c2 10u n2 gnd
         op op1 op27 n2 n3 n4
         op op2 buf634 n4 n5 n5
         freq log 3m 300 1000
         uinput nin 0
         noise n6 sum
         noisy all
         """)
In [11]: # Simulate circuit.
         solution = parser.solution()
In [12]: # Show results.
         solution.plot()
```

solution.show()

Command line interface

- Show and save simulation results/plots
 - zero liso my-circuit.fil --save-figure circ.pdf
- Search op-amp library with binary operators
 - zero library search "vnoise < 3n & inoise < 1p"</pre>
- Automatically download op-amp datasheets using search query
 - zero datasheet -f "OP27"
- Print circuit matrix / equations
 - zero liso my-circuit.fil --print-matrix --print-equations
- Open library and config in text editor
 - zero config --help

Prettier plotting

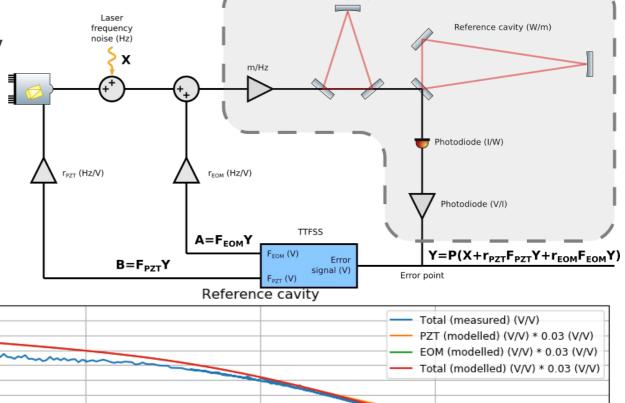
Simulation results

- Results as queryable objects and not just text files
 - Functions know their units, 10-7 can check if units clash when performing mathematical 9 operations*
- Easily combine results from multiple simulations in single plots, then plot together
 - solution_c = solution_a +
 solution b

^{*}Currently separate project (https://git.ligo.org/sean-leavey/freqstab/), will be merged soon

Comparing to LISO

- LISO files in Zero can be compared to LISO automatically
 - zero liso my-circuit.fil --compare
 - Runs LISO directly and overlays results to Zero
- Automatic tests against hundreds of LISO files identical within 10^{-.5} relative/absolute tolerance


Zero as part of wider analyses

AEI 10 m
 reference cavity
 open loop gain
 model

- Zero

- Finesse

Python control library

 10^{3}

https://git.ligo.org/sean-leavey/freqstab/

160

140

120

80

60 40

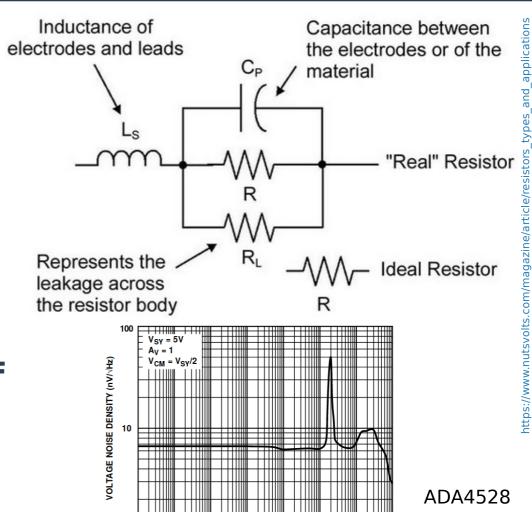
20

-20

-60 -80

 10^{1}

Magnitude (dB V/V)


105

10⁴

Limitations of Zero

- No direct fitting and optimisation functionality
 - But Zero can be included as a library within other fitting and optimisation tools
- Stability, max input, etc. analyses not yet available (but can be added if there is a desire)
- Slower (currently)
 - But could be improved with C-based sparse matrix solver a la Finesse 3

- Continue to expand op-amp library
- Support realistic passive components (resistors with stray C L, excess noise, etc.)
- Support arbitrary opamp noise, not just 1/f
- Future direction depends on feedback from you!

Where to get it

On your computer

- pip install zero

On GitLab

https://git.ligo.org/sean-leavey/zero

Help and support

- Examples on GitLab
- Documentation at https://docs.ligo.org/sean-leavey/zero/
- GitLab issue tracker for help/requests/complaints
- Circuit simulation Mattermost channel: https://chat.ligo.org/ligo/channels/circuit-simulation