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Low Frequency Gravitational Wave
Astronomy

(a.k.a. why do we care?)
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Intro

Scientific benefit to studying low
frequencies below 10Hz
Spinning neutron stars, black holes,
CBCs
CBCs spend more time at low
frequencies, so extra observation time
can be gained with better sensitivity
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2G and 3G at Low Frequencies

Advanced LIGO and
Advanced Virgo will
push low frequency
sensitivity down to
10Hz.
This is already good,
but we want to do
better...
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ET-LF will go to
2Hz to access this
astronomy
We hit a wall with
seismic noise in this
region
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Seismic attenuation systems in
gravitational wave observatories
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In Advanced Virgo, the
vibration isolation system
for the arms, recycling
mirrors and beam splitter
suppress external motion
by up to 15 orders of
magnitude above 10Hz.
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Existing classical control techniques are already pushed to their limit
Non-optimal control introduces additional noise into detection band
This will be more of a problem in 2G and 3G detectors, leading to
lack of sensitivity and lock loss during bad weather
Need a new approach
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Modern control
(Disclaimer: I am not an expert.)

(Second disclaimer: get ready for slides without images)
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We already know something about the dynamics of the suspension
system
Simple control systems are somewhat ignorant of known system
dynamics
Can we use this information somehow to help control the system?
This is the basis of state observation and Kalman filtering
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States

It is useful to think of the ways in which a system can exist as states.

The number of states in a system is determined by the system.

Examples:
Single pendulum
Rigidly coupled pendulum (not the same as two single pendulums)
Gases, magnetic materials, etc...
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State variables

State variables fully describe the system in such a way that its future
behaviour can be determined (in the absence of external forces).

For a mechanical system, the position and velocity of individual
components are the state variables.

It’s therefore possible to take the position and velocity of the system at
time t and calculate it at time t + δt.
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Hidden states

However, in complex systems there are always hidden states present
which can influence your cost function, and thus your ability to control
the system.

Examples:
Aircraft: air density (turbulence), wind speed and direction, etc.
Oil refinery: temperature variations, flow rate of liquids
Interferometry: seismic noise coupling into the suspended optics
in the SAS

These hidden states can impact a classical system enough that the
controller would lose control.
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Control using states

Control of a system is the process of taking the current system state and
feeding back to the system some combination of these signals, with
appropriate gain (filtering). Mathematically:

u = −Kx, (1)

where u and x are actuator signals and states, respectively, and K is a
matrix of gains.
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Cost functions

What is K for?

You use it to minimise a cost function.

Example: a suspended mirror’s set-point. Usually we want to keep
mirrors at their ‘zero’ position.
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Feedback in modern control

For suspended optics using modern control, feedback with K is typically
performed by a linear quadratic regulator (LQR).

Skipping the detail, an LQR is a way of controlling a linear system with a
quadratic cost function. The key constraint is that all of the states in
the system need to be known by the LQR to be able to feed back
appropriately.

How can we possibly know every state of a multi-stage seismic
attenuation system?
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LQR and Kalman filtering

Help comes from the Kalman state estimator, which is able to estimate
the states on behalf of the LQR.

Put simply...

State estimator + linear quadratic regulator = optimal control
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State space representation
(sorry)
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State space equations

A linear, first order, time-invariant system can be described with the state
space equations:

ẋ = Ax+ Bu, (2)

and
y = Cx+ Du. (3)
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State space equations

State space equations

ẋ = Ax+ Bu

y = Cx+ Du

x is the vector containing the system’s states e.g. the position or velocity
of an object within the system.

If there are n states, then x is size n × 1.

Sean Leavey | State observers and Kalman filtering for high performance vibration isolation systems 20/47



State space equations

State space equations

ẋ = Ax+ Bu

y = Cx+ Du

A is the matrix characterising the dynamics of system - the model. It is
of size n × n.

For example, one entry of this matrix might map the velocity of one state
to the position of another.
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State space equations

State space equations

ẋ = Ax+ Bu

y = Cx+ Du

u is the vector representing the system’s inputs, i.e. the actuators, of size
p × 1. The input matrix B maps these actuators to the state dimensions
they operate on.

For example, an actuator might actuate on multiple degrees of freedom,
so B maps one actuator to many dimensions of the state space.
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State space equations

State space equations

ẋ = Ax+ Bu

y = Cx+ Du

y is the vector containing the measurements of the system by its sensors,
of size q × 1. The sensing matrix C is the opposite of B, mapping the
states to the sensors.
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State space equations

State space equations

ẋ = Ax+ Bu

y = Cx+ Du

D simply maps any direct coupling between the actuators and sensors.
For now, we will ignore it (D = 0).
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How do we use the state space
representation to model our system?
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State Estimators

As mentioned before, we use a state estimator.

A state estimator runs in parallel to the system under control. It receives
the same inputs from the controller u as the real system and produces an
estimate of the corresponding state vector given these inputs, ˙̂x.
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State Estimators

Since it predicts the state of the system given its inputs, it can also
produce a corresponding sensor vector ŷ, similar to the real sensor
measurements contained in y.
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State Estimators

The dynamics of the state observer are the same as the real system (we
just add a few hats):

˙̂x = Ax̂+ Bu (4)

ŷ = C x̂ (5)

(remember D = 0 here)
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State Estimators

Estimator

˙̂x = Ax̂+ Bu

ŷ = C x̂

We can then calculate the error between the real system and the state
observer:

e = y − ŷ
= y − C x̂

(6)
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State Observers

Estimator

˙̂x = Ax̂+ Bu

ŷ = C x̂

Error between estimator and system

e = y − ŷ
= y − C x̂

The state estimator’s state space equation can be modified to include a
term proportional to the error:

˙̂x = Ax̂+ Bu+ Le
= Ax̂+ Bu+ L (y − C x̂)

(7)
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Observer gain matrix

Observer equation

˙̂x = Ax̂+ Bu+ Le
= Ax̂+ Bu+ L (y − C x̂)

L is the observer gain matrix. It has n rows and q columns (number of
states × number of actuators).
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Kalman Filtering

L is where a modern controller can select whether to listen to the sensors
or the model in different situations.

Kalman filtering removes the need for the systems engineers to create the
observer gain matrix manually. A Kalman filter will use the complete
history of measurements y (t) to create an optimal estimator at any given
moment.

This leads to an optimal state estimator that minimises the difference
between the measured states and the state estimator’s estimates.
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Effective state estimation for the
Advanced Virgo seismic attenuation

system
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Modelling the seismic attenuation system

An accurate model of the seismic
attenuation system is required for the state
estimator.

This is achieved using the Euler-Lagrange
equation to model the double mass-spring
system.

Note: we only care about vertical motion.
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Modelling the seismic attenuation system
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Subscripts 1 and 2 are the two stages, and vi = ẏi . Bpnωd is the external
disturbance from seismic motion.
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Modelling the seismic attenuation system

The model fits the measurements well:
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Sensor noise

There are two primary sensors in the
SAS:

Linear variable displacement
transducers (LVDTs)
Inertial sensors (geophones)

The LVDTs and geophones have
different SNRs at different
frequencies:

LVDT
DC to 0.1Hz: excellent
greater than 0.1Hz: not so good

Geophones

Below 0.1Hz: bad
Above 0.5Hz: excellent
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Which sensor do I trust more?
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Feedback from Kalman

The frequency response of each of the estimators for the intermediate
stage is shown below:

This shows the
Kalman filter’s
relative trust in each
of the sensors as a
function of frequency.

The cross-over
frequency here
roughly corresponds
to the cross-over of
the SNRs shown
previously.
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Feedback from Kalman

A key feature is that it it can
choose to listen more to the
sensors than the model, or vice
versa, based on how well each of
them previously matched the
actual state.
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How good is the state estimator?
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How good is the state estimator?

After 30 s, injected sinusoidal motion
becomes visible.

The estimators based on the LVDT
and geophone signals begin to
accurately measure this sinusoidal
injection.

The Kalman filter is accurately
modelling all states of the
system.
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Vertical control using the LQR

We refer back to the LQR. Using
the state estimator, an effective gain
matrix K can be produced using
knowledge of the different noise
performances of each of the sensors.

The state estimator’s estimate is
attached to K and fed back to
the system.
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Improvement over “classical” control

1

Observe input noise (present on red curve) being coupled to the LVDT
and geophone measurements on the left, and being suppressed on the
right.
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Improvement over “classical” control
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Conclusions

Better results using modern control in this case
Ability to handle multiple sensors and actuators in one loop
(“MIMO”)
However, the “optimal” part is still determined by the
(human-designed) cost function
Added complexity, harder to understand when things go wrong
Overall, probably a required technology going forward as
SASes get more complex
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What else?

https://www.youtube.com/watch?v=LaDd0gqwCCs
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