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gravitational wave interferome-
try



ground-based detectors

and KAGRA, GEO600... 3



sources of noise

∙ Test masses need to be
quieter than the thing
you want to measure

∙ Laser, mirrors, actuators,
control systems and
photodetectors have
noise

∙ The noise partly
determines the
sensitivity of the
interferometer

Coherent state
antum noise

Vacuum fluctuations

Coating, suspension

and substrate loss

Mirror back-action

Input light

Vacuum fluctuations

Thermal noise
Seismic noise

Laser fluctuations

Technical noise

Ground motion

Vacuum fluctuations

Readout electronics

Electronic noise

Actuator noise
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quantum shot noise

∙ Quantum vacuum enters at loss ports
and propagates to the detector

∙ White in frequency spectrum
hS (f) =

1
L

√

ℏcλ
2πP
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quantum radiation pressure noise

∙ Quantum vacuum enters at loss ports
and imparts momentum to mirrors

∙ Acts as a noisy parametric amplifier for
the carrier light

∙ Creates noise proportional to the
mirror’s mechanical susceptibility

hRP (f) =
1

mf2L

√

ℏP
2π3cλ
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the standard quantum limit

Radiation Pressure Noise

hRP (f) =
1

mf2L

√

ℏP
2π3cλ

Shot Noise

hS (f) =
1
L

√

ℏcλ
2πP

∙ QRPN and QSN combine
to limit sensitivity at all
frequencies - the SQL

∙ Sensitivity reaches the
SQL at only one
frequency

∙ Higher m, P and lower λ
push the most sensitive
frequency higher
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advanced ligo

Current generation detectors are already limited by quantum noise
at their most sensitive frequencies
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beating the standard quantum
limit



beating the sql

∙ So far we used variants of the
Michelson interferometer to
measure displacement

∙ Subject to uncertainty
principle:

[x̂ (t) , x̂ (t+ δt)] ̸= 0

∙ Manifests as the SQL
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beating the sql

Sub-SQL techniques

Manipulating the light
quadrature: squeezing and
variational readout

Local readout
of an optical
bar

Optomechanically coupled
optical springs
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position vs speed measurement

In the 1930s, John von Neumann showed that
some observables can be measured in pairs not
subject to uncertainty.

One pair is momentum:

[p̂ (t) , p̂ (t+ δt)] = 0

(From Wikimedia Commons)
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speed meters

∙ Speed is a proxy for
momentum

∙ So measure the mirrors at
different times

φCW � xN (t) + xE (t+ δt)
φCCW � xE (t) + xN (t+ δt)

∆φ = [xN (t)� xN (t+ δt)]
� [xE (t)� xE (t+ δt)]

∆φ �δt (ẋE (t)� ẋN (t))

Speed meters have reduced quantum radiation pressure noise
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topologies

First speed meter proposed in 2000 as a “sloshing Michelson”

Input

ETMY

ITMX ETMX

ITMY

BS

Sloshing cavityOutput

SR

Output contains light
having sampled the same
mirrors at different times,
akin to speed
measurement
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topologies

Later proposal (Chen, 2002) showed that the Sagnac interferometer
was a QND speed meter

Input

Cavity X

BS

Output

Cavity Y

∙ Sagnacs are used to
measure the Earth’s
rotation

∙ For gravitational wave
detection the zero area
Sagnac must be used to
cancel it

∙ Arm cavities added to
enhance response
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response

∙ The response of the interferometer determines the signal
generated for a given test mass motion

∙ Higher is better
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quantum noise

∙ Noise determines the minimum detectable signal, i.e. the SNR = 1
∙ Lower is better
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sensitivity

∙ QN limited sensitivity is

QNLS =
Noise

Response
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Despite having lower response at LF, speed meter has better overall
sensitivity
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future detectors

∙ Speed meters relax filter cavity loss requirements for frequency
dependent squeezing compared to Michelsons

∙ Potential for application in large-scale detectors in the long term

Presented by Stefan Danilishin, GWADW @ Alaska, 2015
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speed meter zoo

Image credit: Stefan Danilishin
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speed meter zoo

Image credit: Stefan Danilishin

21



experiments

If speed meter detectors are so
great, why aren’t we building one

yet?
...Because there are no free rides
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losses

∙ Loss reintroduces QRPN
∙ This includes
asymmetries

∙ Losses affect speed
meters to a greater
extent than position
meters

∙ Challenging technical
requirements
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losses: scattering

∙ Scattering is a particular killer in
Sagnac speed meters

∙ Counter-propagating mode mixing
∙ A speed meter GW detector probably
won’t be a ring Sagnac
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control

∙ Some control
signals vanish at
low frequencies

∙ When there are
arm cavities,
these need
actively controlled
at dc, but there’s
no signal at the
output
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balanced homodyne detection

∙ Existing detectors use dc
readout

∙ Fixed readout quadrature
∙ To minimise noise the speed
meter needs an adjustable
readout quadrature

∙ Obvious candidate is balanced
homodyne readout

∙ Not used before in suspended
interferometers

These challenges merit some experimentation to prove
the principle and find any show stoppers!
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erc sagnac speed meter experi-
ment



experiment aims

On-going experiment in Glasgow funded by ERC to:

∙ Create an ultra-low noise speed meter testbed dominated by
quantum radiation pressure noise

∙ Demonstrate the reduction of back-action noise in the Sagnac
interferometer topology

∙ Explore challenges with speed meter technology for future
detectors
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experimental parameters

∙ Ultra-high vacuum
∙ Passive seismic isolation
(possibly also active)

∙ Triangular arm cavities
∙ Silica suspensions

∙ 2.8m arm round trip length
∙ Finesse approx. 9000
∙ 20 ppm round trip loss
∙ 5 kW circulating power
∙ In-vacuum BHD
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“dominated by quantum radiation pressure noise”

∙ We aren’t trying to beat
LIGO sensitivity

∙ Want to show that
radiation pressure noise
is lower in a Sagnac
speed meter than in an
equivalent Michelson

∙ Aiming for a factor of 2-3
lower

High finesse, low loss cavities and large beam spots improve
response and decrease noise
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infrastructure

∙ 2 x 1m diameter GEO-style tanks
∙ Fluorel stacks for passive
damping

∙ 60 kg steel disks
∙ Breadboard tables for
experimental apparatus

∙ Bridge structure to rigidly
connect tables
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layout
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front tank

∙ 15+ suspensions
∙ Large BS for
control pick-offs

∙ Mode matching
mirror M9

∙ Suspended BHD
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auxiliary suspensions

∙ Auxiliary suspensions
designed and assembled

∙ Two stages
∙ Steel wires
∙ Coil/magnet actuators
for 4 DOF control

∙ Modified version in
design for the main
beam splitter
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suspended bhd

∙ Local oscillator phase
noise directly couples to
GW channel

∙ Need to isolate BHD in
same way as test masses

∙ Suspended in-vacuum
BHD never before
attempted

∙ Analytical work also
making good progress to
understand effect of
beam jitter
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rear tank

∙ Recycling ETM
suspension design for
AEI prototype

∙ Modified for 45°
∙ Will use silica fibres
∙ Electrostatic drive for
high frequency actuation
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control



control

∙ LIGO CDS system for control of almost
everything

∙ Approx 250 I/O channels required
∙ Fast actuation provided by LIGO CDS
ADC/DAC front ends

∙ Slow controls via EtherCAT ethernet
field bus

∙ Lock acquisition / automation with
LIGO Guardian
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signalling

∙ Suspensions controlled with modular
coil driver subracks

∙ Signals combined into 50-way sub-D
connectors compatible with
feedthroughs

∙ “Octopus” cables split signals inside
vacuum (AEI idea)

06/04/2016 09:17:29  f=1.46  \\VBOXSVR\sean\Workspace\Repositories\speedmeter\trunk\Electronics\Wiring\Diagrams\Auxiliary Octopus Cable.sch (Sheet: 1/1)
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laser stabilisation

∙ Laser relative intensity
noise (RIN) requirement
set by quantum noise at
BHD

∙ Use of common mode
light as an LO reduces
RIN requirement

∙ Without this convenience
stabilisation electronics
design would be
extremely challenging

(Preliminary)
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angular control

∙ Angular cavity control takes advantage
of yaw radiation pressure spring

∙ Pitch needs stabilised once circulating
power exceeds 1 kW

(Preliminary)

By Yutaro Enomoto and Koji
Nagano
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longitudinal control



degrees of freedom

∙ A simple Sagnac is automatically “locked” longitudinally
∙ However, the interferometer has resonant arm cavities
∙ Differential and common modes of the arms need active control
∙ Lack of error signal for cavities at dc leads to feedback of noise
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realistic control model

∙ To quantify drift due to lack of error signal, control loop modelling
is needed

∙ Assume linear negative feedback from the balanced homodyne
detector to the arm cavities (differential motion)

∙ Use numerical tools to model interferometer response, quantum
and technical noise sources, electronics, suspensions and
actuator response and range
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actuator range

∙ To be realistic, need to assume finite actuator range
∙ Whitening/dewhitening needed to avoid ADC/DAC noise
∙ State-space model of ETMs to understand actuator response
∙ Designed a suspension control hierarchy to blend coil and ESD
feedback
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suspension gain hierarchy

∙ Heuristic process
∙ Set unity gain frequency to determine bandwidth
∙ Choose cross-over frequency between coil and ESD feedback
∙ Enhance feedback at suspension resonances (inc. pitch coupling)
∙ Notch out violin modes at high frequencies
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interferometer compensation

∙ As the suspension feedback
was designed in a closed loop,
we need to compensate for the
interferometer plant

∙ Simple integrators approximate
the slope of the interferometer
response within the bandwidth
of the feedback
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drift of bhd electronics

∙ Op-amp noise at low frequencies is not well defined in data sheets
∙ Likely that the BHD electronics contribute feedback noise to the
test masses at low frequencies

∙ This noise creates RMS drift that disrupts resonant condition over
the course of minutes to hours

∙ Measured the BHD noise to understand long term effect
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drift of bhd electronics
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∙ Drift possibly caused by current noise, thermoelectric potentials,
vibrations, etc.

∙ Represents a lower limit on low frequency noise in the lab
∙ Other effects such as fringe alignment, thermal expansion, etc.
can cause additional noise 49



drift of test masses

∙ By modelling the control loop we can estimate the drift
∙ With the BHD readout, the cavities lose resonance after a few
hours
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realistic control model

∙ The solution is to pick off light from the mode matching mirror
from each cavity

∙ Can electronically create a differential arm signal
∙ This is displacement proportional and thus flat at low frequencies
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realistic control model

∙ Blending this feedback at low frequencies allows the speed meter
QND behaviour at high frequencies while keeping the arms from
losing resonance
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realistic control model

∙ Control simulations show the drift is suppressed
∙ The noise fed back by the displacement signal does not affect the
QND character in the measurement band
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optimal blending

∙ Optimal filter can be calculated to blend displacement and
velocity signals

∙ Takes advantage of correlations between the quantum noise
arriving at both readout ports

∙ Shape depends on transmissivity of mode matching mirror
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noise budget

∙ With the control loop
engaged we can
calculate the
out-of-loop noise
budget

∙ Results show we are
QRPN limited
between 100Hz and
around 700Hz
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electrostatic drives



actuation

For low noise actuation directly on the test mass, electrostatic drives
(ESDs) are used. These are low range but low noise actuators.

Credit: Wittel et. al. (arXiv)
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actuation

Experiment on-going to test plate capacitor performance using silica
fibres
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hv amplifier

∙ Four-channel HV amplifier designed to produce low noise ESD
actuation up to �375 V up to 30 kHz

∙ Digitally switchable dewhitening for lock acquisition / low noise
modes

∙ Noise around 10 µV
�
Hz−1 in measurement band
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hv amplifier

∙ Noise meets the requirement in the measurement band
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proof-of-principle experiment
status



one year to go

∙ ERC project funded for 5 years, ends
October 2017

∙ Most suspensions designed, some
built

∙ Core and aux optics arrived or in
manufacture

∙ Longitudinal control scheme designed
∙ Lock acquisition concepts available
∙ Much greater understanding of
quantum and technical noise sources

∙ Commissioning to begin soon!
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plans



concurrent and future activities

∙ 2017-2019: possible installation of squeezer, signal recycling, other
fancy add-ons

∙ 2014-2016: tests of 1550 nm laser and polarisation optics
∙ 2016+: tests of polarisation optics in the 10m prototype towards a
polarisation/circulating Sagnac

∙ 2017+: building of 10m scale sloshing Sagnac to test control and
reduced quantum and coating noise
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Questions?
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