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introduction



lisa pathfinder’s interferometer

∙ State of the art in low
frequency strain
measurement

∙ Complex arrangement of
quasi-monolithic optics

∙ Only measures one
degree of freedom; LISA
will need to measure 12
per spacecraft

∙ Transferring mass into
space is expensive

∙ Can we reduce the
complexity?
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reduced complexity phase mea-
surement



modulation

Sinusoidal signal encountering a sinusoidal phase modulation (e.g. an
oscillating mirror) has power

P = P0 cos (ϕ+ ω0t+m cos (ωmt+ ψm)) (1)

where ϕ is an arbitrary phase offset and m is the modulation depth (or
index).
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Typically in our field, we use
small modulation depths
(m ≤ 0.3) for RF locking,
where only the first few
sidebands are important
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digitally enhanced interferometry

∙ Impose phase modulated
pseudo-random noise onto the
input light

∙ Signals for each mirror can be
extracted in post-processing

∙ See Christian’s journal club
from 2015-10-30

∙ Performance levels reach
10 pm

√
Hz−1 at low frequencies

∙ Small microchips don’t offer
this performance yet, but it’s
promising
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deep phase modulation

PHASE, not FREQUENCY

∙ Imposes strong sinusoidal phase modulation (i.e. m is not small)
on light in one arm

∙ Leads to a comb of beats, not just a few as with weak phase
modulation

∙ Non-linear fit algorithm extracts amplitude of beats to determine
phase

∙ Demonstrated 20 pm
√
Hz−1 sensitivity at mHz
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self-homodyning

∙ “Self homodyning” occurs when unequal arms allow the LO to be
imposed on the laser at source instead of in one arm

∙ Techniques similar to digital interferometry, but using frequency
modulation instead of phase modulation, achieved 1 pm

√
Hz−1

above 1Hz
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deep frequency modulation



papers

In a nutshell, idea is to combine self-homodyning frequency
modulation with deep phase modulation’s readout (i.e. the
non-linear fit algorithm) 9



deep frequency modulation

∙ Unequal arms separated by ∆L

∙ The laser’s frequency is intentionally modulated:

fDFM = ∆f cos (2πfmt+ ψm) , (2)

where ∆f is the modulation depth, fm is the frequency modulation and ψm is
the modulation phase.
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deep frequency modulation

The detector sees two terms, one from each arm:

Short arm

Es =
1
2Ein sin

(
ωt+ ∆f

fm
sin (ωmt+ ψm) + C

)
(3)

Long arm

El =
1
2Ein sin

(
ω (t− τ) +

∆f
fm

sin (ωm (t− τ) + ψm) + C− ϕ

)
(4)

τ is the light travel time in the long arm, C is an arbitrary constant phase
term, and ϕ is the gravitational wave signal.
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deep frequency modulation

The signal power at the detector is then Pout ∝ (Es + El)2, i.e.

Pout =
Pin
2 +

Pin
2 cos

(
ω0τ + ϕ+

∆f
fm

(sin (ωmt+ ψm)− sin (ωm (t− τ) + ψm))

)
(5)

Assuming the delay ω0τ is small, this approximates to

Output signal

Pout =
Pin
2 +

Pin
2 cos (ϕ+ 2π∆fτ cos (ωmt+ ψm)) (6)
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deep frequency modulation

Output signal

Pout =
Pin
2 +

Pin
2 cos (ϕ+ 2π∆fτ cos (ωmt+ ψm)) (7)

This is the same as phase modulation discussed earlier (neglecting ω0t), but
with m = 2π∆fτ , i.e. the amount of phase modulation scales linearly with
the arm length difference and the frequency modulation depth.
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optical setup

Simple optical setup:

∙ The laser light is split into fibres going to various “optical head”
interferometers

∙ A large number of heads can share the same laser
∙ Photodetectors can be standard or quadrant depending on purpose
∙ Signal extraction via transimpedance amplifiers
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processing

Signals are demodulated with sine and cosine signals at N harmonics of ωm,
then low-pass filtered:

Qn = vout (t) cos (nωmt)

≈ kJn (m) cos
(
ϕ+ nπ2

)
cos (nψ) ,

In = vout (t) sin (nωmt)

≈ −kJn (m) cos
(
ϕ+ nπ2

)
sin (nψ) .

(8)

k is an amplitude factor common to both I and Q, Jn (m) are Bessel
functions. These are sent to the non-linear fit algorithm which uses χ2

minimisation to determine k, m, ϕ and ψ.

If fm = 1 kHz and ∆f = 9 GHz, the arm length difference in the interferometer
must be at least ∆L = 48mm for the self-homodyning to work.
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sensitivity

∙ The LPF phase meter, using deep phase modulation, has been shown to
have sensitivity of 1 pm

√
Hz−1 between 1mHz and 1Hz

∙ This is with a matched arm interferometer, with modulation depth m ≈ 9

∙ To achieve the same modulation depth here, the arms must be
imbalanced to give a round-trip time of 160 ps, or ∆L = 48mm (for
modulation depth of ∆f = 9 GHz and modulation frequency of 1 kHz)
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other aspects

Multiplexing
DFM can in principle be combined
with digital interferometry to
multiplex multiple optical signals on
the same channel (fibre link).
Pseudo-random noise is
phase-modulated onto input light.
Fibre lengths for each link are chosen
such that the individual amplitude
modulations are not coherent.
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Absolute ranging
The modulation depth m = 2π∆fτ
encodes the light travel time, so can
be used for absolute ranging. This
works for DPM too. However, either
the reference interferometer’s delay
or the frequency modulation ∆f must
be measured precisely.
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noise



frequency noise

The unequal arm lengths required to make DFM work inherently couples
laser frequency noise.

To measure at the level of 1 pm
√
Hz−1, the frequency noise f̃ must be

f̃ < ∆L
L f = 1 pm

√
Hz−1

∆L/2
c

1064 nm ≈ 11 kHz
√
Hz

−1
(9)

To stabilise the frequency, a reference interferometer is used with fixed,
unequal arm lengths
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frequency noise

Excess laser frequency noise is measured as a reference phase ϕr by the RI,
which can be subtracted from the signal ϕ, or used in a feedback loop
(changing the laser’s base frequency).

A nice additional feature is that m and ψm can also be readout and
stabilised with a loop.
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other noise

Other noise will influence the interferometers:

∙ Laser amplitude noise

∙ Shot noise

∙ Technical noise (e.g. fibre length noise)

∙ Non-perfect sinusoidal frequency modulation

These have been a focus of LISA scientists for years, and are not considered
great challenges to overcome.

Non-perfect frequency modulation adds beats on critical demodulation
frequencies. This is potentially mitigated with a measurement and
subtraction device (not considered).
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experiment



experiment

(a)

∙ Laser source is 1550 nm at 20mW

∙ Electro-optic amplitude modulator stabilises the laser’s amplitude
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experiment

(b)
∙ Light is split into asymmetric Michelson and Mach-Zehnder
interferometers

∙ The MI allows dynamic signals to be tested; the MZ allows two signals with
the same magnitude but opposite sign to be extracted 24



experiment

(c)
∙ ADCs record at 250 kHz
∙ Post-processing performed with non-linear fitting algorithm on I and Q
harmonics
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electronic noise

The MZ the signals (ϕ+ and ϕ-) can be combined in order to measure
different types of noise in various forms. The two MZ signals add up to π:

ϕπ = ϕ+ + ϕ- = π (10)

Alternatively, two channels record the same signals, so these can be
subtracted:

ϕi,∆ = ϕi,1 − ϕi,2 ≈ 0 (11)
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phase measurement performance
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Piezo drive is on MI at 1 Hz. Harmonics clearly present - unsure if from PZT
or from non-linearities in readout. Accoustic coupling dominates noise
above 1Hz. 27



phase measurement performance
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Remember that DFM needs a frequency reference. Using the MZ as a
reference for the MI, the sensitivity improves (green trace)
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phase measurement performance
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Given that the improvement only happens below 1mHz, this shows that the
limiting noise in the system is thermal fluctuations and air density
perturbatations (not laser noise). Both effects will be greatly reduced in
vacuum. 29



phase measurement performance
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The zero combinations of the MI and MZ signals, by subtracting each pair of
channels, shows the electronic noise, likely to be digitisation noise in the
ADC. The MI noise contains some of the 1Hz signal, possibly from
non-linearities due to slightly different ADC channel bandwidths. 30



phase measurement performance

10−3 10−2 10−1 100 101
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

f [Hz]

ϕ
[r

ad
 /
√

H
z]

MZI: ϕ+ ϕ+,Δ
MI: ϕa ϕa,Δ ϕa,corr

The MZ zero combination, ϕ+,∆, increases at low frequencies, not seen in the
MI equivalent. This is possibly due to the larger modulation depth of the MZ,
which makes it more sensitive to temperature effects.
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phase measurement performance
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The signal-cancelling MZ readout is sensitive to laser amplitude noise only
at the modulation harmonics, shot noise and ADC noise, giving an idea of
the experiment’s non-temperature-driven noise 32



phase measurement performance
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ref: 1 pm @1550 nm

In comparison to the LISA design curve, there is a long way to go from the
table top but the results show promise
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conclusions



conclusions

∙ The LPF optical bench must be shrunken for LISA, so less complex
options to classic heterodyne interferometry must be explored

∙ DFM potentially better than DPM due to ability to share same laser
backbone for multiple readouts (like digital interferometry)

∙ Sensitivity on table top still far off LISA requirement
∙ Sounds to me like they need to try this in vacuum!

35


	Introduction
	Reduced complexity phase measurement
	Deep frequency modulation
	Noise
	Experiment
	Conclusions

