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Operating Point

A GW interferometer needs to be at its operating point to be optimally sensitive,
with each mirror’s position controlled to within as little as 10−12 m.

Simple interferometers are
(usually) simple to control

Two-mirror Fabry-Perot
cavities
Simple Michelsons

ITM ETMBSEOM

PD

There are some complicating factors - more of these later.
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Probes

You need to sense the movement of the mirrors inside your interferometer. We do
this with ‘probes’ (typically photodiodes). These might see a DC signal of some
sort, or a demodulated RF signal via the Pound-Drever-Hall technique.
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The above image shows the slopes of the Pound-Drever-Hall error signals during
mirror rotation for an example Fabry-Perot cavity.
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Optical Matrix

The behaviour of an interferometer on its operating point* can be expressed in
the form of the optical matrix:

M = mi,j

for i probes and j degrees of freedom (e.g. tilt, rotation, longitudinal motion of
each mirror).

We can then map mirror motion for a particular degree of freedom Bj to
photodiode signals si via the relation:

mi,j · Bj = si

*Getting an interferometer to its operating point is someone else’s problem. For
the purposes of control we assume the interferometer is near to its locked state.
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Optical Matrix

mi,j · Bj = si

For a simple Fabry-Perot with two mirrors and one photodiode, mi,j might look
something like this:

( ITM ETM
PD 0.5 −0.5

)
,

i.e. the PD contains a mixture of the movement signals from both the ITM and
ETM. Note: values are actually complex but shown as real here for clarity.

ITM ETMBSEOM

PD
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Optical Matrix: Aside

mi,j · Bj = si

Another way of expressing this matrix is with degrees of freedom representing the
different forms of relative motion the arm cavity mirrors can have. We can define
common and differential motion, for example:

(Common Differential
PD 0 1

)
.

The PD sees a linear combination of the motion of the ITM and ETM.

ITM ETMBSEOM

PD
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Optical Matrix

Units are straightforward to work out:
The photodiode measures in watts
Mirror motion is either metres or radians (or anything else you might wish to
call it)
Hence the interferometer matrix M is in watts per metre or watts per radian

mi,j [W/m] · Bj [m] = si [W]
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Optical Matrix

Inverting M would give us units of [m/W] (or [rad/W]).

We can just look at our photodiodes, multiply the signal by the inverse of our
interferometer matrix and we end up with a set of mirror motions!

M−1S = M−1M · B = B

Assuming we can feed this motion information back to the mirrors in a control
loop, we can keep the interferometer locked.
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Optical Matrix

This places a constraint on our control matrix: it must be invertible:

det (M) 6= 0

Physically, this means that the matrix must map the full mirror longitudinal /
angular space. Even if we don’t care about a particular mirror’s motion to detect
GWs (e.g. the power recycling mirror), we still need to know about it to be able
to control the arm cavities (to detect GWs).
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Optical Matrix

An example of M for an uncontrollable interferometer:

( ITM Pitch ETM Pitch
PD 1 1 1
PD 2 1 1

)
This matrix’s determinant is 0. It shows the effect of pitch of both the ITM and
ETM is degenerate; you can’t separate the different mirror motions between the
two photodiodes even with elementary row operations.
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Advanced Interferometers

Gravitational wave detectors typically have more mirrors than just the three
involved in a Michelson. That means there are some additional dynamics to
complicate things:

Second arm cavity
Power recycling mirror
Signal recycling mirror
(Not shown) Schnupp
asymmetry
(Not shown) ITM detuning
for DC readout
(Not shown) Signal
recycling detuning

Arm Cavity Y
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Advanced Interferometers

A realistic control matrix for an advanced interferometer might look something
like this:



XH XS YH YS SRCH SRCS PRCH PRCS MCHH MCHS
1 1 x x x x x x x x x
2 x 1 x x x x x x x x
3 x x 1 x x x x x x x
4 x x x 1 x x x x x x
5 x x x x 1 x x x x x
6 x x x x x 1 x x x x
7 x x x x x x 1 x x x
8 x x x x x x x 1 x x
9 x x x x x x x x 1 x
10 x x x x x x x x x 1


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Advanced Interferometers

More complications, not part of the 2nd generation detectors (at least, the core
parts):

High finesse cavities
Coupled mirrors (Neil’s experiment, Khalili cavities, etc.)

It is difficult to calculate the interferometer matrix M analytically, which is why
we usually simulate things with FINESSE or Optickle.
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Advanced Interferometers

We need a way of evaluating whether a control matrix for a given set of probes is
good or not!

The paper describes a way of evaluating control matrices.
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Evaluating Control Matrices

The determinant does not
necessarily tell us anything
about the controllability of a
matrix. We can instead use the
wedge product:

V = |det (M)|

This gives us a volume V which
is the volume spanned by the
normalised vectors si in the
mirror space B.

s2

B1

B2 s3

B3

s1
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Evaluating Control Matrices

This volume represents the
controllability of the system:

A zero volume (i.e. all
sensors sensing the same
DOFs) means the system is
uncontrollable
A volume of V = 1 would
be perfectly decoupled in
each DOF
0 < V < 1 is not intuitive

s2

B1

B2 s3

B3

s1
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Evaluating Control Matrices

For 0 < V < 1 we can instead
use a special technique:

Make all vectors orthogonal
except one
This last vector can then be
offset by the angle α
making the volume equal to
V
It turns out that
α = arcsin (|det (M)|)
α is then a figure of merit
for the controllability of the
interferometer given a
control matrix

s2

B1

B2 s3

B3

s1

α
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Application to Virgo

Virgo contains more sensors
than degrees of freedom:

Control matrix not square
No defined determinant
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The controllability can therefore only be calculated by working out the best subset
of sensors to control the interferometer.
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Application to Virgo

In Virgo, this quality parameter α was used to determine the original angular
control scheme’s suitability. It was found to have α ≈ 2◦ (bad). Simulations
showed that introducing an additional sideband frequency to the interferometer
made α ≈ 40◦!

So, it works!
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Aside: Non-stationary systems

In reality, we have noise to deal with as well as the optical response of an
interferometer to our probes. The operating point might change with time, so
control matrices which are not only optimal but also robust to small changes are
favourable.

It turns out we can
visualise uncertainties
with cones on the mirror
DOF space.
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