What’s the difference between resistor types?

Assorted resistors. Which type is useful when?
(Source: Wikimedia Commons)

Anyone who’s ever had to buy resistors from sites like RS, Farnell or DigiKey will know that there are myriad types to choose from: “carbon composite”, “wire-wound”, “carbon film”, “metal film”… what do these mean, and in which applications are they useful and harmful?

Carbon composite resistors


  • Cheap
  • Withstand high current transients


  • High temperature coefficient
  • Resistance drifts with time when used with high current
  • High tolerance

These are made from conductive carbon dust packed together with clay, with the ratio determining the resistance. They are generally available only for low power applications, but can withstand short high current bursts. The material properties are such that it is difficult for manufacturers to precisely define the resistance, so tolerances are generally poor. The temperature coefficients of carbon composite resistors are also generally poor (typically 1000 ppm/°C or greater), meaning that these resistors are useful mainly for hobby and general purpose circuits.

Carbon composite resistor. These have mostly been superseded by film resistors.
(Source: Wikipedia)

Carbon composite resistors have been largely superseded by film resistors, of which there are two main types: carbon film and metal film.

Film resistors


  • Low temperature coefficient
  • Low tolerance
  • Available with very high resistances


  • Tenancy to be damaged by current overloads
  • Generally only available in low power ratings

Film resistors are the bread-and-butter of most designs. They are made with a mix of ceramic and metal (“cermet”) or metal oxide deposited in a film over an insulating substrate. The resistance is determined by the deposited thickness of the film, and very high resistances can be achieved in small packages with this technique. Precise tolerances are reached during manufacturing by using a laser to etch a spiral around the film to create a longer effective path around the outside of the substrate.

Carbon film resistor with exposed film. Note the spiral etched into the film at the factory to trim to a precise resistance.
(Source: Shaddack, via Wikimedia Commons)

Film resistors have very good temperature coefficients (typically 50-1000 ppm/°C, with carbon and metal types tending to have opposite signs), providing stability for precision circuit applications. Due to the deposition of layers of metal without a clay matrix, these resistors are susceptible to damage from high currents and therefore are not generally available in high power packages.

Wire-wound resistors


  • Suitable for high current applications


  • High series inductance
  • Only available with relatively small resistances

Wire-wound resistors are, as the name suggests, made by tightly winding conductive wire around an insulating substrate. The thickness (“gauge”) of the wire and the number of turns made determine the resistance, but this creates a volume constraint and so these resistors are typically only available with small (less than 100 kΩ) resistances.

Available tolerances are typically fine for most applications, but precision laser trimming is not an option unlike with film resistors and so tolerances are generally not lower than 1%.

Wire-wound resistor. Note the metal packaging and ability to mount the resistor to a panel for good heat sinking.
(Source: Olli Niemitalo via Wikimedia Commons)

Given the relatively thick (thin wire is still much thicker than film) conductors used in the construction, these resistors are able to carry large currents and are available in very high power packages – 50 W or more – making them ideal as heating elements (intentional or otherwise). The downside, however, is that the wound wire creates a coil which induces an electric field in the middle, creating a phase shift in signals particularly at high frequencies. Some wire-wound resistors combat this effect by counter-winding the wire to cancel the inductance, but it is difficult to remove the inductance entirely. Use of wire-wound resistors in precision circuits – which typically don’t require high power anyway – is discouraged in favour of film resistors.



  • Andrew Wade

    There is another important aspect of the resistors: noise. Apart from the fundamental 4kTR thermal noise and coupling of thermal drift there is also a conduction noise for the different types of resistors. Should be something like 1/f^0.5 kicking in at LF, so impacts mostly for LF circuits. Carbon composite and carbon film are the worst, they are fine for hobby projects but should be removed from all laboratory workshops. Certain metal film resistors are pretty good but you have to get the right ones. Wire wound are the best for this type of noise.

Leave a Reply

Your email address will not be published. Required fields are marked *